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Spatial two-photon coherence of the entangled field produced by down-conversion using
a partially spatially coherent pump beam
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We study the spatial coherence properties of the entangled two-photon field produced by parametric down-
conversion (PDC) when the pump field is, spatially, a partially coherent beam. By explicitly treating the case of
a pump beam of the Gaussian Schell-model type, we show that in PDC the spatial coherence properties of the
pump field get entirely transferred to the spatial coherence properties of the down-converted two-photon field.
As one important consequence of this study, we find that, for two-qubit states based on the position correlations
of the two-photon field, the maximum achievable entanglement, as quantified by concurrence, is bounded by
the degree of spatial coherence of the pump field. These results could be important by providing a means of
controlling the entanglement of down-converted photons by tailoring the degree of coherence of the pump field.
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I. INTRODUCTION

In the past few decades several temporal [1–9] and spatial
[10–17] interference effects have been observed with the
entangled two-photon field produced by parametric down-
conversion (PDC)—a nonlinear optical process in which a
pump photon interacts with a crystal and splits into two
separate photons called the signal and idler photons. The
coherence properties of the two-photon field are affected by
the crystal parameters as well as by the pump field parameters
and have been studied in various different contexts [18–24]. In
particular, it has been shown that the angular spectrum of the
pump field gets completely transferred to the down-converted
two-photon field [20]. In all these previous studies [10–24],
the pump field has been taken to be spatially coherent,
and the effects due to the limited spatial coherence of the
pump field have so far not been investigated. In this article,
we study how the spatial coherence properties of the pump
field affect the spatial coherence properties of the entangled
two-photon field.

The article is organized as follows. In Sec. II, we present
a conceptual description of spatial two-photon interference in
terms of two displacement parameters, which we construct
using the transverse position vectors of the signal and idler
photons in the two interfering alternatives. In Sec. III, taking
the pump field to be a partially coherent Gaussian Schell-model
beam [25–27], we show in terms of the two displacement
parameters that the spatial coherence properties of the pump
field get entirely transferred to the down-converted two-photon
field. In Sec. IV, we discuss the effects due to the limited spatial
coherence of the pump field on the entanglement of two-qubit
states that are based on the position correlations of the down-
converted photons. We show that the maximum achievable
entanglement of such states, as quantified by concurrence, is
bounded by the degree of spatial coherence of the pump field.
Sec. V presents some conclusions.
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II. SPATIAL TWO-PHOTON INTERFERENCE:
CONCEPTUAL DESCRIPTION

Figure 1 represents a generic situation for studying the
spatial coherence properties of the two-photon field. The signal
and idler photons produced by PDC go through a pair of double
holes located at plane z. They are detected in coincidence by
detectors Ds and Di located at positions rs and r i , respectively.
There are two alternative pathways by which signal and idler
photons can reach detectors Ds and Di . In alternative 1, the
signal and idler photons go through the pair of holes located
at rs1 ≡ (ρs1, z) and r i1 ≡ (ρi1, z), and in alternative 2, they
go through those located at rs2 ≡ (ρs2, z) and r i2 ≡ (ρi2, z).
In principle, there are two more alternative pathways: one in
which the signal and idler photons go through the pair of holes
located at rs1 ≡ (ρs1, z) and r i2 ≡ (ρi2, z), and the second in
which they go through those located at r s2 ≡ (ρs2, z) and r i1 ≡
(ρi1, z). In what follows we explicitly assume that the phase-
matching condition is such that the probability amplitudes of
these two other alternatives are negligibly small.

Throughout this article, subscripts p, s, and i stand for
pump, signal, and idler, respectively. In Fig. 1, the distance
traveled by a photon from the crystal to a hole is denoted
by r . The distance traveled from a hole to the corresponding
detector is denoted by d and the associated time elapsed by
t = d/c. The transverse position vector of a photon is denoted
by ρ. Thus, ρs1 represents the transverse position vector of the
signal photon in alternative 1, etc. We define two displacement
parameters in terms of the transverse position vectors of the
signal and idler photons in the two alternatives as

ρ1 ≡ ρs1 + ρi1

2
, ρ2 ≡ ρs2 + ρi2

2
, �ρ = ρ1 − ρ2

ρ ′
1 ≡ ρs1 − ρi1, ρ ′

2 ≡ ρs2 − ρi2, �ρ ′ = ρ ′
1 − ρ ′

2. (1)

Here ρ1 (2) and ρ ′
1 (2) are the two-photon transverse position

vector and the two-photon position-asymmetry vector in alter-
native 1 (2). For either alternative, the two-photon transverse
position vector is defined to be the average of the transverse
position vectors of the signal and idler photons; the two-photon
position-asymmetry vector is defined to be the difference of
the transverse position vectors of the signal and idler photons.
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FIG. 1. (Color online) (a) Schematic laboratory setup that could
be used to study the spatial coherence properties of the two-photon
field produced by PDC using a partially coherent pump beam.
(b) 1 and 2 represent two alternative pathways by which the down-
converted signal and idler photons can pass through the holes and
get detected in coincidence at detectors Ds and Di . In alternative 1,
the signal and idler photons go through the pair of holes located at
rs1 ≡ (ρs1, z) and r i1 ≡ (ρi1, z), and in alternative 2, they go through
those located at rs2 ≡ (ρs2, z) and r i2 ≡ (ρi2, z). ρ1 (2) and ρ ′

1 (2) are
the two displacement parameters in alternatives 1 (2) defined in
Eq. (1) in terms of which we describe the coherence properties of
the two-photon field.

We denote the positive-frequency parts of the electric
fields at detectors Ds and Di by Ê(+)

s (rs , t) and Ê
(+)
i (r i , t),

respectively. Ê(+)
s (rs , t) and Ê

(+)
i (r i , t) are equal to the sum

of the signal and idler fields arriving at detectors Ds and Di in
alternatives 1 and 2; that is,

Ê(+)
s (rs , t) = ks1Ê

(+)
s1 (rs1)e−iωs (t−ts1)

+ ks2Ê
(+)
s2 (rs2)e−iωs (t−ts2), (2)

Ê
(+)
i (r i , t) = ki1Ê

(+)
i1 (r i1)e−iωi (t−ti1)

+ ki2Ê
(+)
i2 (r i2)e−iωi (t−ti2). (3)

Here Ê
(+)
s1 (rs1) is the positive-frequency part of the signal

field at position rs1, etc. The constant factor ks1 depends
on the size of the hole at rs1 and the geometry of the
arrangement. The coincidence count rate Rsi(rs , r i), which
is the probability per (unit time)2 that a photon is detected at
position rs at time t and another at position r i at time t +
τ , is given by Rsi(rs , r i) = αsαi tr{ρtpÊ

(−)
s (rs , t)Ê

(−)
i (r i , t +

τ )Ê(+)
i (r i , t + τ )Ê(+)

s (rs , t)} [28], where the symbol tr stands
for the trace, αs and αi denote the quantum efficiencies of
detectors Ds and Di , respectively, and ρtp represents the
density matrix of the two-photon field produced by PDC. By
substituting from Eqs. (2) and (3), we write the coincidence
count rate Rsi(rs , r i) as

Rsi(rs , r i) = k2
1S

(2)(ρs1, ρi1, z) + k2
2S

(2)(ρs2, ρi2, z)

+ k1k2W
(2)(ρs1, ρi1, ρs2, ρi2, z)

× ei[ωs (ts1−ts2)+ωi (ti1−ti2)] + c.c., (4a)

where k1 = √
αsαiks1ki1, k2 = √

αsαiks2ki2,

W (2)(ρs1, ρi1, ρs2, ρi2, z)

= tr{ρtpÊ
(−)
s1 (rs1)Ê(−)

i1 (r i1)Ê(+)
i2 (r i2)Ê(+)

s2 (rs2)} (4b)

and

S(2)(ρs1, ρi1, z) = W (2)(ρs1, ρi1, ρs1, ρi1, z). (4c)

Equation (4a) is the interference law for the two-photon field.
The first and second terms of Eq. (4a) are the coincidence count
rates when coincidences are collected from only alternatives 1
and 2, respectively. The interference terms appear when coinci-
dences are collected from both the alternatives. S(2)(ρs1, ρi1, z)
and S(2)(ρs2, ρi2, z) will be referred to as the two-photon
spectral density in alternatives 1 and 2, respectively; these
terms are recognized as the two-photon analogs of the spectral
density function of the second-order coherence theory [27].
W (2)(ρs1, ρi1, ρs2, ρi2, z) will be referred to as the two-photon
cross-spectral density function; it is a four-point fourth-order
(in the field) correlation function. It satisfies four Wolf
equations [24,27,28] and is recognized as the two-photon
analog of the cross-spectral density function. To keep the
notations simpler, we do not show the frequency arguments
in the definitions of the two-photon spectral density and the
two-photon cross-spectral density functions.

III. THE SPATIAL COHERENCE PROPERTIES
OF THE TWO-PHOTON FIELD

We evaluate the two-photon cross-spectral density function
W (2)(ρs1, ρi1, ρs2, ρi2, z), and thereby the coincidence count
rate Rsi(rs , r i), in terms of the two displacement parameters
defined in Eq. (1). For conceptual clarity, and without any
loss of generality, we assume that the pump, signal, and idler
fields are monochromatic, with frequencies given by ω0, ωs ,
and ωi , respectively. We take the down-conversion crystal to
be very thin and assume paraxial conditions. The state of the
two-photon field produced by PDC can then be represented by
a density matrix ρtp given by [18–20]:

ρtp = |A|2
∫∫∫∫

dqsdqidq ′
sdq ′

i

×〈V (qs + qi)V
∗(q ′

s + q ′
i)〉e|qs〉|qi〉〈q ′

i |〈q ′
s |, (5)

where |A|2 is a constant that depends on physical constants,
〈· · ·〉e represents the ensemble average over the different
realizations of the pump field, and qs and qi are the transverse
wave vectors of the signal and idler fields. The ensemble av-
erage 〈V (qs + qi)V

∗(q ′
s + q ′

i)〉e is recognized as the angular
correlation function of the pump field [29], with qs + qi = qp
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and q ′
s + q ′

i = q ′
p being the transverse wave vectors of the

pump field. In writing Eq. (5), it has been assumed that the
pump field intensities are so weak that effects that occur at high
pump intensities, such as the gain-induced diffraction [30],
have no appreciable effect on the generated two-photon field.

The electric field operators Ê(+)(rs1) and Ê(+)(r i1), within
the paraxial approximations, can be written as [18–20]

Ê
(+)
s1 (rs1) = eiksz

∫
dqâs(q)ei(q·ρs1−q2z/2ks ), (6)

Ê
(+)
i1 (r i1) = eikiz

∫
dq ′âi(q ′)ei(q ′ ·ρi1−q ′2z/2ki ), (7)

where q2 = |q|2, q ′2 = |q ′|2, ks = ks(ωs), and ki = ki(ωi).
We present in this section our calculations for the case of
degenerate down-conversion only; the nondegenerate case
is presented in the Appendix. We take ωs = ωi = ω0/2
and, within the paraxial approximations, take ks ≈ ki ≈ k0/2,
where k0 is the cental wave-vector magnitude of the pump
field. Using Eqs. (5), (6), and (7), we write Eq. (4b) as

W (2)(ρs1, ρi1, ρs2, ρi2, z)

= |A|2
∫ ∫ ∫ ∫

dqsdq ′
sdqidq ′

i

×〈V (qs + qi)V
∗(q ′

s + q ′
i)〉eei[qs ·ρs1+qi ·ρi1−q ′

s ·ρs2−q ′
i ·ρi2]

× e−i(z/k0)[(q2
s +q2

i )−(q ′2
s +q ′2

i )]. (8)

The two-photon cross-spectral density function
W (2)(ρs1, ρi1, ρs2, ρi2, z) is an integral of the angular
correlation function of the pump field; and therefore, the
spatial coherence properties of the pump field get transferred
to the spatial coherence properties of the two-photon field.
We calculate the analytical expression for the two-photon
cross-spectral density, for the special case of a partially
coherent pump field of Gaussian Schell-model type [25].

A Gaussian Schell-model beam is characterized by its beam
waist width σs at z = 0 and its transverse coherence width σµ

at z = 0, which is the distance scale over which the pump field
at z = 0 remains spatially coherent. The angular correlation
function for the Gaussian Schell-model pump field is given by
(see Ref. [26], Section 5.6.4)

〈V (qs + qi)V
∗(q ′

s + q ′
i)〉e

→〈V (qp)V ∗(q ′
p)〉e

= (
Apσsδ/2π

)2
exp [−α(qp)2 − α(q ′

p)2 + 2βqp · q ′
p],

where (9a)

α = σ 2
s

(
σ 2

µ + 2σ 2
s

)/(
σ 2

µ + 4σ 2
s

)
,

β = 2σ 4
s

/(
σ 2

µ + 4σ 2
s

)
, (9b)

δ2 = 4σ 2
s σ 2

µ

/(
σ 2

µ + 4σ 2
s

)
,

and Ap is a constant. The far-field expression of the cross-
spectral density function W (ρp1, ρp2, z) of the pump field at
positions rp1 ≡ (ρp1, z) and rp2 ≡ (ρp2, z) along the pump
beam path is then given by (see Ref. [26], section 5.6.4)

W (ρp1, ρp2, z) = eik0(rp1−rp2)

×
√

S(ρp1, z)S(ρp2, z)µ(�ρp, z), (10a)

zz=0

Partially
Coherent
Pump
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2σs(z)∆ρ∆ρp
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FIG. 2. (Color online) Schematic representation of a partially
spatially coherent pump beam; σs(z) is the rms beam radius of the
pump field at plane z and σµ(z) is the rms spatial coherence width
of the pump field at plane z. ρp1 and ρp2 are the transverse position
vectors of two points within the pump beam.

where rp1 = |rp1|, rp2 = |rp2| and �ρp = ρp1 − ρp2;

S(ρp1, z) = (Apσsδk0/z)2 exp {−(1/2)[ρp1/σs(z)]2} (10b)

is the spectral density of the pump field at position rp1, with

σs(z) = z

√
σ 2

µ + 4σ 2
s

/
2k0σsσµ (10c)

being the rms beam radius of the pump field at plane z in the
far field; and

µ(�ρp, z) = exp {−(1/2)[�ρp/σµ(z)]2} (10d)

is the degree of spatial coherence of the pump field, with

σµ(z) = z

√
σ 2

µ + 4σ 2
s

/
2k0σ

2
s (10e)

being the rms spatial coherence width of the pump field at plane
z in the far field. Figure 2 illustrates the beam radius σs(z) and
the spatial coherence width σµ(z) of a partially coherent pump
beam.

We now substitute Eq. (9) into Eq. (8) and calculate the
far-field expression of the two-photon cross-spectral density
W (2)(ρs1, ρi1, ρs2, ρi2, z). After a very long but straightfor-
ward calculation, we find that

W (2)(ρs1, ρi1, ρs2, ρi2, z)

= C exp
[
(ik0/4z)

(
ρ2

s1 + ρ2
i1 − ρ2

s2 − ρ2
i2

)]
× exp

{−(
αk2

0

/
4z2)[(ρs1 + ρi1)2 + (ρs2 + ρi2)2]

+ (
βk2

0

/
2z2

)
[(ρs1 + ρi1) · (ρs2 + ρi2)]

}
, (11)

where C = |A|2[(Apπσsδk
2
0)/(2z2)]2 and ρs1 = |ρs1| is the

distance from the z axis of the hole located at rs1, etc. Since
the distances of the holes from the z axis were assumed to be
much smaller than their distances from the crystal, we make the
approximation rs1 ≈ z + ρ2

s1/2z, etc., and write (1/2z)(ρ2
s1 +

ρ2
i1 − ρ2

s2 − ρ2
i2) ≈ (rs1 + ri1 − rs2 − ri2). Next, we substitute

r1 = (rs1 + ri1)/2 and r2 = (rs2 + ri2)/2 and write down
W (2)(ρs1, ρi1, ρs2, ρi2, z) in terms of the two-photon trans-
verse position vectors defined in Eq. (1). We then obtain

W (2)(ρs1, ρi1, ρs2, ρi2, z)

→ W (2)(ρ1, ρ2, z)

= eik0(r1−r2)
√

S(2)(ρ1, z)S(2)(ρ2, z)µ(2)(�ρ, z), (12a)

where

S(2)(ρ1, z) = C exp
{−(1/2)

[
ρ1/σ

(2)
s (z)

]2}
(12b)
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is the two-photon spectral density in alternative 1, with

σ (2)
s (z) = z

√
σ 2

µ + 4σ 2
s

/
2k0σsσµ (12c)

being the rms correlation width of the two-photon field at z;
and where

µ(2)(�ρ, z) = exp
{−(1/2)

[
�ρ

/
σ (2)

µ (z)
]2}

(12d)

is the degree of spatial two-photon-coherence, with

σ (2)
µ (z) = z

√
σ 2

µ + 4σ 2
s

/
2k0σ

2
s (12e)

being the rms spatial coherence width of the two-photon
field. Comparing Eqs. (10) and (12), we at once find that
in terms of the two-photon transverse position vectors,
the two-photon cross-spectral density function assumes
the same form as does the pump cross-spectral density
function in terms of the pump transverse position vectors.
Thus, the spatial coherence properties of the pump field
get entirely transferred to the spatial coherence properties
of the down-converted two-photon field. We note that the
functional forms of the two-photon correlation width σ (2)

s (z)
and the two-photon transverse coherence width σ (2)

µ (z)
are the same as those of the pump beam radius σs(z) and
the pump transverse coherence width σµ(z), respectively.
Thus, the two-photon field seems to propagate as if it were
the pump beam with its transverse position vectors given
by the two-photon transverse position vectors. Figure 3 illus-
trates the physical interpretation of the two-photon correlation
width and the two-photon transverse coherence width.

ρρi1

ρ1

ρs1

2σs(z)

4σs(z)

PDC

z=0

(a)

(b)

z

∆ρ∆ρ

ρ2

ρ1

z

Partially
Coherent
Pump

2σµ(z) 2σs(z)

FIG. 3. (Color online) Physical interpretation of the two-photon
correlation width σ (2)

s (z) and the two-photon transverse coherence
width σ (2)

µ (z) in terms of the two-photon transverse position vectors.
(a) The two-photon correlation width σ (2)

s (z) is equal to the pump
beam radius σs(z). As a result, when an idler photon is detected
at position ρi1, the corresponding signal photon has an appreciable
probability of being detected anywhere inside an area whose center
is at −ρi1 and whose radius is twice the pump beam radius σs(z).
(b) The two-photon spatial coherence width σ (2)

µ (z) is equal to the
spatial coherence width of the pump field σµ(z); thus, for alternatives
1 and 2 of Fig. 1 to remain mutually coherent, |�ρ| = |ρ1 − ρ2| has
to be less than the spatial coherence width σµ(z) of the pump field.

The coincidence count rate Rsi(rs , r i) of Eq. (4a) can now
be written as

Rsi(rs , r i)

= k2
1S

(2)(ρ1, z) + k2
2S

(2)(ρ2, z)

+ 2k1k2

√
S(2)(ρ1, z)S(2)(ρ2, z)µ(2)(�ρ, z) cos(k0�L),

(13)

where we have replaced ω0ts1 by k0ds1, etc., and have sub-
stituted l1 = r1 + (ds1 + di1)/2, l2 = r2 + (ds2 + di2)/2 and
�L = l1 − l2. Here l1 (2) is the two-photon path-length in
alternative 1 (2) [7,31]. The visibility V of the two-photon
interference fringes is given by

V = 2k1k2

√
S(2)(ρ1, z)S(2)(ρ2, z)

k2
1S

(2)(ρ1, z) + k2
2S

(2)(ρ2, z)
µ(2)(�ρ, z). (14)

We note that the two-photon cross-spectral density function
[Eq. (12a)] and the coincidence count rate [Eq. (13)] depend
on only one displacement parameter, the two-photon trans-
verse position vector, and remain independent of the other
displacement parameter, the two-photon position-asymmetry
vector. This is a special feature of the degenerate two-photon
field. However, in the case of nondegenerate two-photon fields,
the two-photon cross-spectral density depends on both the
displacement parameters, as we show in the Appendix.

IV. SPATIAL TWO-PHOTON COHERENCE AND
ENTANGLEMENT OF SPATIAL TWO-QUBIT STATES

Two-qubit states are very important for quantum informa-
tion technology, as they are the necessary ingredients for many
quantum information based applications, such as quantum
cryptography [32], quantum dense coding [33], and quantum
teleportation [34]. Entangled two-qubit states that are based on
the position-momentum entanglement of the down-converted
photons are prepared by utilizing either the position or
the momentum correlations of the down-converted photons
[35–39]. When position correlations are used for the purpose,
the prepared qubit states are referred to as spatial two-qubit
states. Both Neves et al. [36,40] and O’sullivan et al. [35] have
utilized the position correlations of down-converted photons
to prepare entangled two-qubit states. The entanglement of
spatial two-qubit states are quite often quantified by an
entanglement measure called concurrence [41,42].

In the pervious sections, we discussed how the spatial
coherence properties of the two-photon field propagate and
how they depend on the spatial coherence properties of
the pump field. In this section, we study the connection
between the degree of spatial two-photon-coherence and the
entanglement of spatial two-qubit states as quantified by
concurrence. We derive an explicit relationship showing how
the entanglement of a spatial two-qubit state gets affected by
the spatial coherence properties of the two-photon field, and
in turn by the spatial coherence properties of the pump field.
We restrict our analysis to the class of two-qubit states that can
be represented by a density matrix having only two nonzero
diagonal elements.

The scheme of Fig. 1(a) represents a spatial two-qubit state,
with {|s1〉, |s2〉} and {|i1〉, |i2〉} forming the two-dimensional
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orthonormal bases for the signal and idler photons, respec-
tively, where |s1〉 represents the state of the signal photon
passing through the hole located at transverse position ρs1,
etc. The four-dimensional basis set for the two-qubit state can
then be represented by {|s1〉|i1〉, |s1〉|i2〉, |s2〉|i1〉, |s2〉|i2〉},
where |s1〉|i1〉 represents the joint state of the signal and idler
photons when the signal photon passes through the hole located
at ρs1 and the idler photon passes through the hole located at
ρi1, etc.

We now make an explicit assumption that the probabilities
of finding the signal and idler photons in states |s1〉|i2〉 and
|s2〉|i1〉 are negligibly small. In an experiment, this can be
ensured by keeping the separations between the two signal
and the two idler holes to be much bigger than the two-photon
correlation width σ (2)

s (z) so that the two-photon spectral
densities for the pairs of transverse positions (ρs1, ρi2) and
(ρs2, ρi1) are negligibly small. With the above assumption, the
density matrix ρqubit of the two-qubit state thus prepared can be
written in the basis {|s1〉|i1〉, |s1〉|i2〉, |s2〉|i1〉, |s2〉|i2〉} as

ρqubit =

⎛
⎜⎜⎜⎝

a 0 0 c

0 0 0 0

0 0 0 0

d 0 0 b

⎞
⎟⎟⎟⎠ , (15)

where a and b are the probabilities that the signal and
idler photons are detected in states |s1〉|i1〉 and |s2〉|i2〉,
respectively, with a + b = 1. The off-diagonal term c is a
measure of coherence between states |s1〉|i1〉 and |s2〉|i2〉,
with c = d∗. From our studies in the last two sections, we find
that the probability a of detecting the signal and idler photons
in state |s1〉|i1〉 is proportional to the two-photon spectral
density S(2)(ρ1, z). Similarly, the probability b of detecting the
signal and idler photons in state |s2〉|i2〉 is proportional to the
two-photon spectral density S(2)(ρ2, z). Thus, we write

a = ηk2
1S

(2)(ρ1, z) and (16)

b = ηk2
2S

(2)(ρ2, z), (17)

where η = 1/[k2
1S

(2)(ρ1, z) + k2
2S

(2)(ρ2, z)] is the constant of
proportionality. Further, we find that the off-diagonal term c,
which is a measure of coherence between the two-photon states
|s1〉|i1〉 and |s2〉|i2〉, is proportional to the two-photon cross-
spectral density W (2)(ρ1, ρ2, z) ≡ W (2)(ρs1, ρi1, ρs2, ρi2, z)
at the two pairs of transverse positions (ρs1, ρi1) and (ρs2, ρi2),
that is,

c = d∗ = ηk1k2W
(2)(ρ1, ρ2, z). (18)

We now quantify the entanglement of the two-qubit state
represented by the density matrix ρqubit. The entanglement
of a general two-qubit state can be characterized in terms
of Wootters’ concurrence [41,42], which ranges from 0 to
1, with 1 corresponding to the maximally entangled two-
qubit state and 0 to a nonentangled state. For a given two-
qubit density matrix ρ, the concurrence C(ρ) is given by
C(ρ) = max{0,

√
λ1 − √

λ2 − √
λ3 − √

λ4}. Here the λi’s are
the non-negative eigenvalues, in descending order, of matrix
ζ = ρ(σy ⊗ σy)ρ∗(σy ⊗ σy), with

σy =
(

0 −i

i 0

)

being the usual Pauli operator and ρ∗ the complex con-
jugate of ρ . For the density matrix ρqubit, the matrix ζ

becomes

ζ =

⎛
⎜⎜⎜⎝

ab + cd 0 0 2ac

0 0 0 0

0 0 0 0

2bd 0 0 ab + cd

⎞
⎟⎟⎟⎠ . (19)

The eigenvalues of ζ in descending order are

λ1 = (
√

ab + |c|)2,

λ2 = (
√

ab − |c|)2,
(20)

λ3 = 0, and

λ4 = 0,

where we have substituted c = d∗. Thus, the concurrence
C(ρqubit) = max{0,

√
λ1 − √

λ2 − √
λ3 − √

λ4} is given by

C(ρqubit) = 2|c| = 2k1k2|W (2)(ρ1, ρ2, z)|
k2

1S
(2)(ρ1, z) + k2

2S
(2)(ρ2, z)

. (21)

We thus find that for a spatial two-qubit state, concurrence is
proportional to the magnitude of the two-photon cross-spectral
density at the two pairs of transverse positions that define
the two-qubit state. Using Eq. (12a), we rewrite the above
expression as

C(ρqubit) = 2k1k2

√
S(2)(ρ1, z)S(2)(ρ2, z)

k2
1S

(2)(ρ1, z) + k2
2S

(2)(ρ2, z)
µ(2)(�ρ, z). (22)

Comparing Eq. (22) with Eq. (14), we at once see that
the quantity on the right-hand side of Eq. (22) is the
far-field visibility V of the two-photon interference fringes
produced by the pair of double holes. This also implies that
for a two-qubit state that has only two nonzero diagonal
elements, entanglement can be characterized using a single
experimentally measurable quantity [39]. In the special case
in which k2

1S
(2)(ρ1, z) = k2

2S
(2)(ρ2, z), or a = b, we get

C(ρqubit) = µ(2)(�ρ, z); (23)

that is, when the probabilities of detecting signal and idler
photon in the two alternatives are equal, concurrence becomes
equal to the degree of spatial two-photon-coherence. Since,
as shown in the previous section, the degree of spatial two-
photon coherence depends on the degree of spatial coherence
of the pump field, it follows that the maximum achievable
entanglement of a spatial two-qubit state is bounded by the
degree of spatial coherence of the pump field.

We note that in our analysis we have not taken into account
other factors that also affect phase-matching in PDC, such
as the finite thickness of the nonlinear crystal and the finite
frequency bandwidths of the fields, etc. As these factors do not
introduce any decoherence in the down-conversion process, it
is reasonable to assume that they do not affect the degree
of coherence between the two alternatives. However, these
factors do affect the two-photon spectral densities in the two
alternatives. Therefore, in situations in which the two-photon
spectral densities in the two alternatives are not equal, that is,
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when k2
1S

(2)(ρ1, z) 
= k2
2S

(2)(ρ2, z), the entanglement of the
spatial two-qubit state is affected not only by the spatial
coherence properties of the pump field but also by the
aforementioned factors.

V. CONCLUSIONS AND DISCUSSION

In summary, we have studied the spatial coherence proper-
ties of the two-photon field produced by PDC when the pump
field is, spatially, a partially coherent beam of the Gaussian
Schell-model type. We have constructed two displacement
parameters using the transverse position vectors of the signal
and idler photons in the two interfering alternatives. In terms
of these parameters, we have described two-alternative spatial
two-photon interference and have shown that in PDC the
spatial coherence properties of the pump field get entirely
transferred to the spatial coherence properties of the down-
converted two-photon field. We have then analyzed the effects
due to the limited spatial coherence of the pump field on
the entanglement of two-qubit states that are based on the
spatial correlations of the two-photon field. We have shown
that for such states the maximum achievable entanglement
is bounded by the degree of spatial coherence of the pump
field. One implication of the results of this article is that they
allow one to determine how imperfect the spatial coherence
properties of the pump laser can be while being sufficient
to produce entangled light fields with specified degrees of
entanglement.

Moreover, under certain circumstances, it might be de-
sirable to generate entangled light fields with a less than
complete degree of entanglement. For instance, it has been
recently shown that spatially partially coherent beams are less
affected by atmospheric turbulence than are spatially fully
coherent beams [43–45]. In light of the results presented
in this article, it then follows, at least intuitively, that the
entangled two-photon field produced by using a partially
coherent pump beam will be less susceptible to atmospheric
turbulence than will the entangled two-photon field produced
by using a fully coherent pump beam. This may have important
implications in that the partial coherence of the pump field can
be used as a parameter, along with the other phase-matching
parameters, to prepare two-qubit states that are optimal for a
given quantum-information protocol and a given strength of
turbulence.
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APPENDIX

In this appendix, we calculate the two-photon cross-spectral
density function W (2)(ρs1, ρi1, ρs2, ρi2, z) of Eq. (4b) for the
case of nondegenerate PDC. Using Eqs. (5), (6), and (7), we

write Eq. (4b) as:

W (2)(ρs1, ρi1, ρs2, ρi2, z)

= |A|2
∫∫∫∫

dqsdq ′
sdqidq ′

i〈V (qs + qi)V
∗(q ′

s + q ′
i)〉e

× e
i

(
qs ·ρs1−q2

s z/2ks+qi ·ρi1−q2
i z/2ki

)

× e
−i

(
q ′

s ·ρs2−q2
s′ z/2ks+q ′

i ·ρi2−q2
i′ z/2ki

)
. (A1)

We substitute for 〈V (qs + qi)V
∗(q ′

s + q ′
i)〉e from Eq. (9) and

calculate the far-field expression for W (2)(ρs1, ρi1, ρs2, ρi2, z),
which after a very long but straightforward calculation can be
shown to be

W (2)(ρs1, ρi1, ρs2, ρi2, z)

= |A|2(2πApσsδkski/z
2)2

× exp
[
(i/2z)

(
ksρ

2
s1 + kiρ

2
i1 − ksρ

2
s2 − kiρ

2
i2

)]
× exp

{−(α/z2)
[
(ksρs1 + kiρi1)2 + (ksρs2 + kiρi2)2

]
+ (

2β/z2
)
[(ksρs1 + kiρi1) · (ksρs2 + kiρi2)]

}
. (A2)

We substitute k0 = (ks + ki) and kd = (ks − ki)/2, and writing
rs1 ≈ z + ρ2

s1/2z, etc., we substitute r ′
1 = rs1 − ri1 and r ′

2 =
rs2 − ri2. Finally, substituting for α and β from Eq. (9b), we
write Eq. (A2) in terms of the two-photon transverse position
vectors defined in Eq. (1):

W (2)(ρ1, ρ
′
1, ρ2, ρ

′
2, z)

= ei[k0(r1−r2)+kd (r ′
1−r ′

2)]
√

S(2)(ρ1, ρ
′
1, z)S(2)(ρ2, ρ

′
2, z)

×µ(2)(�ρ,�ρ ′, z), (A3a)

where

S(2)(ρ1, ρ
′
1, z)

= Cd exp
{−(1/2)

{
[ρ1 + (kd/k0)ρ ′

1]
/
σ (2)

s (z)
}2}

(A3b)

is the two-photon spectral density in alternative 1, with Cd =
|A|2{[Apπσsδ(k2

0 − 4k2
d )]/(2z2)}2, and where

µ(2)(�ρ,�ρ ′, z)

= exp
{−(1/2)

{
[�ρ + (kd/k0)�ρ ′]

/
σ (2)

µ (z)
}2}

(A3c)

is the degree of spatial two-photon-coherence. Now, using
Eqs. (4) and (A3), we find the coincidence count rate
Rsi(rs , r i) of Eq. (4a) to be

Rsi(rs , r i) = S(2)(ρ1, ρ
′
1, z) + S(2)(ρ2, ρ

′
2, z)

+ 2
√

S(2)(ρ1, ρ
′
1, z)S(2)(ρ2, ρ

′
2, z)

×µ(2)(�ρ,�ρ ′, z) cos(k0�L + kd�L′), (A4)

where we have substituted ω0 = (ωs + ωi) and ωd = (ωs −
ωi)/2, and have replaced ω0ts1 with k0ds1 and ωdts1

with kdds1, etc. We have also substituted l1 = r1 + (ds1 +
di1)/2, l2 = r2 + (ds2 + di2)/2; l′1 = r ′

1 + (ds1 − di1), l′2 =
r ′

2 + (ds2 − di2); and �L = l1 − l2 and �L′ = l′1 − l′2. Here
l′1 (2) is the two-photon path-asymmetry length in alternative
1 (2) [7]. We note that in the special case of degenerate
down-conversion, kd = 0, Eqs. (A3) and (A4) reduce to
the corresponding Eqs. (12a) and (13), respectively, for the
degenerate case.
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